Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Chem Biodivers ; 21(2): e202301949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326086

RESUMO

Five new iridoids, valeralides A-E (1-5), two new acyclic monoterpenoids, valeralides F (6) and G (7), together with two known iridoids (8 and 9), were isolated from the roots and rhizomes of Valeriana officinalis var. latifolia. Their structures were elucidated based on 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. The absolute configuration of compounds 1-4 were elucidated based on electronic circular dichroism (ECD) calculation. In addition, all the isolates were evaluated for their inhibition on nitric oxide production, cytotoxicity and anti-influenza A virus activity.


Assuntos
Rizoma , Valeriana , Estrutura Molecular , Valeriana/química , Iridoides/química , Monoterpenos/análise , Raízes de Plantas/química
2.
Phytochemistry ; 219: 113962, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185394

RESUMO

Thirteen previously undescribed iridoids (1-13), together with five known iridoids (14-18) were isolated from the roots and rhizomes of Valeriana jatamansi Jones. Their structures with absolute configurations were elucidated by analysis of MS, NMR, optical rotation and their experimental and calculated electronic circular dichroism spectra. All of the isolated compounds were tested for their protective effects against α-hemolysin-induced cell death in A549 cells. Compounds 14, 16 and 17 showed moderate protective effects, and compounds 15 and 18 showed weak protective effects.


Assuntos
Nardostachys , Valeriana , Rizoma , Valeriana/química , Proteínas Hemolisinas/análise , Estrutura Molecular , Iridoides/farmacologia , Iridoides/química , Raízes de Plantas/química
3.
Phytochemistry ; 218: 113934, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029951

RESUMO

Fifty-nine compounds, including nineteen previously undescribed iridoids (valeriananols A-S) and an undescribed alkaloid (5'-isovaleryl uridine), were isolated from the leaves and stems of Valeriana officinalis var. latifolia. Their structures were elucidated based on Mass spectrometry and NMR spectroscopy. The absolute configuration of valeriananols A-C, E-N, P, Q and S was determined by experimental and calculated electronic circular dichroism. Structurally, valeriananols A and B were two 1,3-seco-iridoids with a 3,6-epoxy moiety, valeriananols K and L were a pair of C-4 epimers, while valeriananol S was a 4'-deoxy iridoid glycoside. In addition, valeriananol P, stenopterin A and patriscabioin C exhibited significant inhibition on nitric oxide production with IC50 values of 10.31, 3.93 and 8.69 µM, respectively. Furthermore, stenopterin A and patriscabioin C showed anti-proliferation activity on the MCF-7 cell line with IC50 values of 17.28 and 13.89 µM, respectively.


Assuntos
Valeriana , Estrutura Molecular , Valeriana/química , Iridoides/farmacologia , Iridoides/química , Raízes de Plantas/química , Espectroscopia de Ressonância Magnética
4.
J Sep Sci ; 47(1): e2300550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066382

RESUMO

Valeriana jatamansi Jones is a commonly used traditional Chinese medicine, boasting rich effective compositions with versatile chemical structures and wide polarity, including iridoids, chlorogenic acid, and flavonoids. Previous reports indicate that conventional high-performance liquid chromatography (HPLC) analytical methods have proven inefficient performance in comprehensively characterizing components in Valeriana jatamansi. In the present study, a hybrid online analytical platform combining supercritical fluid extraction with both conventional HPLC separation (reverse phase) and supercritical fluid chromatography (normal phase) has been established and validated. This system can provide online extraction with two different chromatographic separation modes to increase separation ability and has been connected to a mass spectrometer to acquire high-resolution mass spectrometry data. Then, the online platform was applied to screening components in Valeriana jatamansi. A total of 117 compounds were identified, including five lignans, 18 organic acids, six flavonoids, and 88 iridoids. Thirty-three compounds were reported from Valeriana jatamansi for the first time. These results enrich our understanding of the components of Valeriana jatamansi and prove that the developed online platform in this study is a robust approach for accelerating working efficiency in comprehensively analyzing complicated samples.


Assuntos
Cromatografia com Fluido Supercrítico , Valeriana , Valeriana/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Iridoides/análise , Flavonoides/análise
5.
Chem Pharm Bull (Tokyo) ; 71(7): 495-501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394597

RESUMO

We isolated the new sesquiterpenes, valerianaterpenes IV and V, and the new lignans valerianalignans I-III from the methanol extracts of the rhizomes and roots of Valeriana fauriei and elucidated their structures based on chemical and spectroscopic findings. The absolute configuration of valerianaterpene IV and valerianalignans I-III were established by comparing experimental and predicted electronic circular dichroism (ECD) data. Among the isolated compounds, valerianalignans I and II exerted anti-proliferative activity against human astrocytoma cells (U-251 MG) and their cancer stem cells (U-251 MG CSCs). Interestingly, valerianalignans I and II notably exerted anti-proliferative activities at lower concentrations against CSCs than non-CSCs, and the absolute configurations of these compounds affected their activities.


Assuntos
Neoplasias , Sesquiterpenos , Valeriana , Humanos , Valeriana/química , Sesquiterpenos/química , Raízes de Plantas/química , Células-Tronco Neoplásicas , Estrutura Molecular
6.
Plant Physiol Biochem ; 200: 107751, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230025

RESUMO

Medicinal plants are global sources of herbal products, drugs, and cosmetics. They are disappearing rapidly due to anthropogenic pressure, overexploitation, unsustainable harvesting, lack of knowledge on cultivation, and the availability of quality plating materials. In this context, standardized in-vitro propagation protocol was followed to produce Valeriana jatamansi Jones, and transferred in two locations at Kosi-Katarmal (GBP) Almora (1200 masl) and Sri Narayan Ashram (SNA) Pithoragarh (Altitude 2750 masl), Uttarakhand. Over the three years of growth, plants were gathered from both locations for determining biochemical and physiological parameters, and growth performance. The plants growing at Sri Narayan Ashram (SNA) showed considerably (p < 0.05) higher amounts of polyphenolics, antioxidant activities, and phenolic compounds. Similarly, physiological parameters (transpiration 0.004 mol m-2 s-1; photosynthesis 8.20 µmol m-2 s-1; stomatal conductance 0.24 mol m-2 s-1), plant growth performance (leaves number 40, roots number 30, root length 14 cm) and soil attributes (total nitrogen 9.30; potassium 0.025; phosphorus 0.34 mg/g, respectively) were found best in the SNA as compared to GBP. In addition, moderate polar solvent (i.e., acetonitrile and methanol) was found suitable for extracting higher bioactive constituents from plants. The findings from this study revealed that large-scale cultivation of V. jatamansi should promote at higher elevation areas such as Sri Narayan Ashram to harness the maximum potential of the species. Such a protective approach with the right interventions will be helpful to provide livelihood security to the local populace along with quality material for commercial cultivation. This can fulfill the demand through regular supply of raw material to the industries and simultaneously promote their conservation.


Assuntos
Valeriana , Compostos Fitoquímicos/química , Valeriana/anatomia & histologia , Valeriana/química , Altitude , Filogenia
7.
Phytochemistry ; 208: 113590, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36696936

RESUMO

Cytotoxic activity-guided isolation studies on the underground parts of Valeriana sisymbriifolia Vahl. led to the isolation of 12 secondary metabolites including two undescribed iridoids, sisymbriifolivaltrate and sisymbriifolioside, and two unreported sesquiterpene lactones, sisymbriifolins A and B. Chemical structures of the isolates were established by extensive 1D and 2D NMR analyses as well as HR-ESI-MS. The in vitro cytotoxic activities of the extract, sub-fractions and isolates on lung (A549), breast (MCF7), gastric (HGC27) and prostate (PC3) cancer cell lines were evaluated by MTS assay. Sisymbriifolivaltrate, didrovaltrate, valtrate, 7-homovaltrate and 1-α-acevaltrate exhibited promising cytotoxic activity on MCF7 cell line with IC50 values ranging from 2.5 to 12.3 µM, while valtrate demonstrated the best cytotoxicity against A549 cells with the IC50 value of 7.5 µM. Valtrate and 7-homovaltrate were found to exert noteworthy cytotoxicity towards HGC27 cell line (IC50 values: 2.3 and 3.7 µM, respectively), whereas valtrate, 7-homovaltrate and 1-α-acevaltrate (IC50 values: 2.3-9.7 µM) were found to be potent cytotoxic against PC3 cells. Among the tested compounds, particularly valepotriate-type iridoids were found to be the main cytotoxic principles of V. sisymbriifolia.


Assuntos
Antineoplásicos , Valeriana , Animais , Valeriana/química , Iridoides/química
8.
Nat Prod Res ; 37(2): 248-255, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34343061

RESUMO

A new acylated iridoid, valejatadoid H (1), along with fourteen known compounds, were obtained from the n-BuOH extract of the roots and rhizomes of Valeriana jatamansi, and their structures were elucidated by various spectroscopic methods. Among them, compounds 8, 11 and 13 exhibited potent inhibition on NO production, with IC50 values of 4.21, 6.08 and 20.36 µM, respectively. In addition, compounds 14 and 15 showed anti-influenza virus activities, among which compound 14 exhibited significant effect with an IC50 value of 0.99 µM.


Assuntos
Valeriana , Valeriana/química , Iridoides/química , Raízes de Plantas/química , Rizoma
9.
Planta Med ; 89(1): 30-45, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35764305

RESUMO

Various age-related chronic diseases have been linked to oxidative stress. The cellular antioxidant response pathway is regulated by the transcription factor nuclear erythroid factor 2. Therefore, plant-derived nuclear erythroid factor 2 activators might be useful therapeutics to stimulate the body's defense mechanisms. Our study focused on the discovery of potent nuclear erythroid factor 2 activators from medicinal plants. Initially, a variety of medicinal plant extracts were screened for nuclear erythroid factor 2 activity using a nuclear erythroid factor 2 luciferase reporter cell line. Among these, Valerian (Valeriana officinalis) root was identified as a potent candidate. Sequential extraction and bioassay-guided fractionation led to the isolation of four nuclear erythroid factor 2-active compounds, which were structurally identified by NMR and LC/HRMS as the known compounds isovaltrate, valtrate, jatamanvaltrate-P, and valerenic acid. These four compounds were then tested in relevant biological assays. Firstly, their effects on the expression of glutathione S-transferase, glutamate-cysteine ligase catalytic subunit, glutathione peroxidase, and heme oxygenase 1 were determined in HepG2 cells. Glutathione S-transferase P1 and glutamate-cysteine ligase catalytic subunit were upregulated by isovaltrate, valtrate, and jatamanvaltrate-P, while heme oxygenase 1 was upregulated by isovaltrate, jatamanvaltrate-P, and valerenic acid. The four compounds also increased the levels of glutathione and its metabolite, CysGly. As glutathione aids in the detoxification of hydrogen peroxide, cytoprotective effects of these four nuclear erythroid factor 2 activators against hydrogen peroxide toxicity were investigated, and indeed, the compounds significantly improved cell survival. This study provides evidence that four valepotriates from the roots of V. officinalis are activators of nuclear erythroid factor 2-mediated antioxidant and detoxification pathways. Our data might expand the medical use of this plant beyond its current application as a sleep aid.


Assuntos
Antioxidantes , Valeriana , Antioxidantes/química , Fator 2 Relacionado a NF-E2/metabolismo , Valeriana/química , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Glutationa/metabolismo
10.
Chem Biodivers ; 19(10): e202200659, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36111652

RESUMO

The aim of this study was to isolate the cytotoxic compounds from V. alliariifolia via activity-guided isolation and to determine the mechanism of actions of the most potent ones. The crude EtOH extract as well as CHCl3 and AcOEt subextracts demonstrated remarkable cytotoxic activities against A549, MCF7, HGC27 and PC3 cancer cells. Sequential chromatographic separations on active subextracts yielded 14 secondary metabolites, including 11 iridoids (1-11) most of which belong to non-glycosidic ester iridoids, two phenylpropanoids (12 and 13) and one lignan (14). The chemical structures of purified compounds were elucidated by NMR and MS analysis. Among the isolates, 7-deisovaleroylvaltrate (3) was isolated for the first time as a natural product. According to the cytotoxic assay compounds, 2, 4-6 and 8 were found to be the potent cytotoxic compounds (IC50 <10 µM) against at least one of the tested cancer cell lines. Thus, 2, 4-6 and 8 were investigated for their effects on apoptotic, necrotic and autophagic pathways as well as cell cycle progression. They exerted anticancer activities by inducing different cell death mechanisms depending on the cancer cells. The results demonstrated that 2, 4-6 and 8 could be potential anticancer drug leads that deserve further in vivo and clinical studies on the way to discover novel natural compounds with anticancer properties.


Assuntos
Antineoplásicos , Lignanas , Valeriana , Valeriana/química , Iridoides/farmacologia , Iridoides/química , Ésteres , Antineoplásicos/farmacologia , Antineoplásicos/química , Morte Celular , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Chem Biodivers ; 19(9): e202200609, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35997664

RESUMO

Eleven new seco-iridoids, valeridoids G-Q (1-6 and 8-12), along with four known products, 9-epi-valtral C (7), desacylbaldrinal (13), 11-methoxyviburtinal (14) and baldrinal (15), were obtained from Valeriana jatamansi. Among them, the new compounds were identified by their NMR, HR-ESI-MS spectroscopic data and ECD calculation. Moreover, valeridoid N and O were a pair of C3 epimers, whose ether bonds between C-1 and C-3 opened, and new ether bonds formed between C-3 and C-6. Valeridoid Q belonged to the C-1 degradation of seco-iridoids. As a result, 9-epi-valtral C displayed significant inhibition on Streptococcus agalactiae, Staphylococcus aureus, Staphylococcus argenteus, Shigella flexneri and Klebsiella pneumoniae, and valeridoid Q exhibited the most significant inhibition against Salmonella enteritidis. 9-Epi-valtral C and baldrinal selectively inhibited the growth of human glioma stem cells. Valeridoid Q exhibited significant anti-influenza activity, while valeridoid O inhibited nitric oxide production.


Assuntos
Valeriana , Éteres , Humanos , Iridoides/química , Estrutura Molecular , Óxido Nítrico , Raízes de Plantas/química , Valeriana/química
12.
Phytochemistry ; 203: 113375, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35973611

RESUMO

Nardostachys jatamansi is close to Valerian in consideration of their same psychoactive effects, such as sedation and neuroprotection. Valeriana-type iridoids are major active components of Valerian, but few valeriana-type iridoids have been isolated from N. jatamansi. Iridoid-targeting chemical investigation of the rhizomes of N. jatamansi resulted in the isolation of seven valeriana-type iridoid glycosides, four of which are previously undescribed. Their structures were determined through NMR spectroscopy, high-resolution mass spectrometry, and optical rotation experiments. In addition, the inaccurate configurations of patrinalloside and 6″-acetylpatrinalloside from previous reports were corrected. These compounds, unstable due to alcoholic solvents, were more stable in the mixtures than in purified forms, as monitored by the qNMR method, supporting the use of natural products as mixtures. Furthermore, the isolates, as well as crude and solvent partition extracts, were found to have a protective effect against hydrogen-peroxide-induced toxicity in human neuroblastoma cells, as confirmed by assays for cell viability and antioxidation. These findings suggest the potential therapeutic application of the valeriana-type iridoid glycosides isolated herein with improved biochemical stability.


Assuntos
Produtos Biológicos , Nardostachys , Neuroblastoma , Valeriana , Humanos , Hidrogênio/análise , Peróxido de Hidrogênio/análise , Glicosídeos Iridoides/farmacologia , Iridoides/química , Estresse Oxidativo , Extratos Vegetais/química , Raízes de Plantas/química , Rizoma , Solventes , Valeriana/química
13.
Fitoterapia ; 162: 105286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029942

RESUMO

Eight new iridoids, jatavaleridoids A-H (1-8), were isolated from the roots and rhizomes of Valeriana jatamansi. Their structures and absolute configurations were elucidated based on NMR and HRESIMS spectroscopic data, as well as quantum chemical calculation. Structurally, compounds 1-5 and 8 were rare iridoids with long-chain fatty acid esters at C-10. In addition, compound 7 showed cytotoxicity, while compounds 1 and 2 exhibited inhibition on NO production.


Assuntos
Nardostachys , Valeriana , Ácidos Graxos/análise , Iridoides/química , Iridoides/farmacologia , Estrutura Molecular , Raízes de Plantas/química , Rizoma , Valeriana/química
14.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458582

RESUMO

Valeriana jatamansi is an important temperate herb that is used in the pharmaceutical and essential oil industries. In India, this species is now on the verge of extinction due to the over-exploitation of its rhizomes from its natural habitat. It is hypothesized that the variations in bioactive compounds in its essential oil are very high among the wild populations as well as cultivated sources. Thus, this study was conducted to evaluate the chemical profiling of essential oil of four wild populations (Rupena, Kugti, Garola, and Khani) and two cultivated sources (CSIR-IHBT, Salooni), which were distilled at three consecutive days. The variation in oil concentration in roots/rhizomes was found significant (p ≤ 0.05), and the maximum value (0.35%) was registered with the population collected from Kugti and Khani. In essential oil, irrespective of population and distillation day, patchouli alcohol was the major compound, which ranged from 19 to 63.1%. The maximum value (63.1%) was recorded with the essential oil obtained from Garola's population and distilled on the first day. The percentage of seychellene was abruptly increased with subsequent days of extraction in all the populations. The multivariate analysis revealed that the essential oil profiles of Rupena, Kugti, Garola, and CSIR-IHBT populations were found to be similar during the first day of distillation. However, during the second day, Rupena, Kugti, Khani, and CSIR-IHBT came under the same ellipse of 0.95% coefficient. The results suggest that the population of Kugti is superior in terms of oil concentration (0.35%), with a higher proportion of patchouli alcohol (63% on the first day). Thus, repeated distillation is recommended for higher recovery of essential oil. Moreover, repeated distillation can be used to attain V. jatamansi essential oil with differential and perhaps targeted definite chemical profile.


Assuntos
Nardostachys , Óleos Voláteis , Valeriana , Altitude , Destilação/métodos , Óleos Voláteis/química , Valeriana/química
15.
Bioorg Chem ; 121: 105692, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248903

RESUMO

Twenty-one new iridoids, jatamansidoids A-U (1-12, 21-26, 32, 35 and 36), two new natural ones, jatamansidoids V (37) and W (38), eighteen known ones (13-20, 27-31, 33 and 34), together with three patchoulol-type sesquiterpenoids (39-41), were isolated from the roots and rhizomes of Valeriana jatamansi. Structurally, compounds 1-7 were the first examples of iridoids from V. jatamansi with unique α, ß, γ, δ-unsaturated aldehyde fragment between C-11, C-4, C-5, C-9 and C-8; compound 8 was an unprecedented iridoid derivative with a methyl group (Me-10) at C-1, rather than C-8, and its plausible biogenetic pathway was proposed in this paper; compounds 22 and 23 were the first examples of Δ4(5)-iridoids simultaneously replaced by oxygen-containing groups at C-3, C-6 and C-7; compound 24 was the first iridoid with both 6,7- and 1,10-epoxy fragments. The structures and absolute configurations of new compounds were elucidated based on extensive spectroscopic techniques and quantum chemical calculation. Furthermore, compounds 13-15 and 39-41 exhibited potent anti-influenza virus activities with H1N1 and H3N2 strains, with IC50 values of 0.21-1.48 µM.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Nardostachys , Sesquiterpenos , Valeriana , Vírus da Influenza A Subtipo H3N2 , Iridoides/química , Iridoides/farmacologia , Estrutura Molecular , Raízes de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Valeriana/química
16.
Oxid Med Cell Longev ; 2022: 3645431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069972

RESUMO

Skeletal muscle atrophy is defined as wasting or loss of muscle. Although glucocorticoids (GCs) are well-known anti-inflammatory drugs, their long-term or high-dose use induces skeletal muscle atrophy. Valeriana fauriei (VF) is used to treat restlessness, anxiety, and sleep disorders; however, its effects on skeletal muscle health have not been investigated. This study investigated whether Valeriana fauriei could ameliorate muscle atrophy. We induced muscle atrophy in vitro and in vivo, by treatment with dexamethasone (DEX), a synthetic GC. In DEX-induced myotube atrophy, Valeriana fauriei treatment increased the fusion index and decreased the expression of muscle atrophic genes such as muscle atrophy F-box (MAFbx/Atrogin-1) and muscle RING-finger protein 1 (MuRF1). In DEX-treated mice with muscle atrophy, Valeriana fauriei supplementation increased the ability to exercise, muscle weight, and cross-sectional area, whereas it inhibited myosin heavy chain isoform transition and the expression of muscle atrophy biomarkers. Valeriana fauriei treatment led to via the downregulation of muscle atrophic genes via inhibition of GC receptor translocation. Valeriana fauriei was also found to act as a reactive oxygen species (ROS) scavenger. Didrovaltrate (DI), an iridoid compound from Valeriana fauriei, was found to downregulate atrophic genes and decrease ROS in the DEX-induced myotube atrophy. Consolidated, our results indicate that Valeriana fauriei prevents DEX-induced muscle atrophy by inhibiting GC receptor translocation. Further, Valeriana fauriei acts as a ROS scavenger, and its functional compound is didrovaltrate. We suggest that Valeriana fauriei and its functional compound didrovaltrate possess therapeutic potentials against muscle atrophy.


Assuntos
Antioxidantes/uso terapêutico , Dexametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Valeriana/química , Animais , Antioxidantes/farmacologia , Humanos , Masculino , Camundongos
17.
Nat Prod Res ; 36(18): 4620-4629, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34812687

RESUMO

Valeriana jatamansi is hired as multiple remedies for treatment of insomnia, blood and circulatory disorders, asthma, dry cough, jaundice, seminal weakness, cardiac debility, and skin diseases in Vietnam. Our research discovered the phytochemical investigation of constituents from this herbal medicine resulted in the isolation of two new compounds (jatamansides A (4) and B (7)) together with 16 known ones from the whole plant. Their structures were established by using spectroscopic techniques (multinuclear and multidimensional nuclear magnetic resonance, infrared, ultraviolet-visible), mass spectrometry, hydrolysis analysis, or comparing their NMR data to those reported in the literature. In addition, all the isolates were evaluated for their inhibitory effect against TNF-α production in LPS-stimulated on RAW264.7 cells with significant inhibition.


Assuntos
Plantas Medicinais , Valeriana , Anti-Inflamatórios/farmacologia , Iridoides/química , Estrutura Molecular , Plantas Medicinais/química , Valeriana/química
18.
Nat Prod Res ; 36(13): 3280-3285, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33261518

RESUMO

A new norsesquiterpene, wilfordonol E (1), and a new lignan, dipsalignan E (3), together with a known norsesquiterpene and eleven known lignans were isolated from the roots and rhizomes of Valeriana jatamansi. The structures of new compounds were determined by their NMR and HR-ESI-MS spectra. Additionally, some compounds were evaluated for their anti-influenza A virus effects.


Assuntos
Lignanas , Valeriana , Iridoides/química , Lignanas/análise , Lignanas/farmacologia , Estrutura Molecular , Raízes de Plantas/química , Valeriana/química
19.
Nat Prod Res ; 36(13): 3360-3367, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33297740

RESUMO

Two new iridoids namely valerialloside A and valerianoside A (1 and 2) along with five known compounds (3-7) were isolated from the roots of Valeriana jatamansi Jones. The structure of new compounds were determined using 1D and 2D NMR including 1H-1H COSY, HSQC, HMBC and NOESY spectroscopic techniques.


Assuntos
Valeriana , Iridoides/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Raízes de Plantas/química , Valeriana/química
20.
Planta Med ; 88(2): 152-162, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33511622

RESUMO

Herbal medication used in the treatment of sleep disorders and anxiety often contain extracts of Valeriana officinalis or Passiflora incarnata. Valerenic acid in V. officinalis and apigenin, orientin, and vitexin in P. incarnata are thought to contribute to their therapeutic effect. It was the aim of this study to test whether these constituents of herbal extracts are interacting with the uptake of estrone 3-sulfate, pregnenolone sulfate, and dehydroepiandrosterone sulfate mediated by the uptake transporters organic anion transporting polypeptide 2B1 (OATP2B1) or organic anion transporting polypeptide 1A2 (OATP1A2). Madin-Darby canine kidney cells overexpressing OATP2B1 or OATP1A2 were used to determine the influence of the constituents on the cellular accumulation of the sulfated steroids. Subsequently, competitive counterflow experiments were applied to test whether identified inhibitors are also substrates of the transporters. Valerenic acid only interacted with OATP2B1, whereas apigenin, orientin, and vitexin interacted with OATP2B1 and OATP1A2. Competitive counterflow revealed that orientin is a substrate of both transporters, while apigenin was transported by OATP1A2 and vitexin by OATP2B1. In a next step, commercially available P. incarnata preparations were assessed for their influence on the transporters, revealing inhibition of transporter-mediated estrone 3-sulfate uptake. HPLC-UV-MS analysis confirmed the presence of orientin and vitexin in these preparations, thereby suggesting that these constituents are involved in the interaction. Our data indicate that constituents of P. incarnata may alter the function of OATP2B1 and OATP1A2, which could affect the uptake of other compounds relying on uptake mediated by the transporters.


Assuntos
Transportadores de Ânions Orgânicos , Passiflora , Compostos Fitoquímicos/farmacologia , Valeriana , Animais , Transporte Biológico , Cães , Transportadores de Ânions Orgânicos/metabolismo , Passiflora/química , Peptídeos , Valeriana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...